CSCC69 Week 10 Notes

Lecture Notes:
Improving Performances with BSD Fast File System:
This is the original Unix FS layout:

@ I'GG
o
m T

Unix Disk Layout

It is slow on hard disk drive - only gets 2% of disk maximum (20Kb/sec) even for
sequential disk transfers.

There
1.

2.

3.

were 3 problems to why it was so slow:
In the original Unix File System, the blocks were too small (512 bytes).
Because the file index was too large, it required more indirect blocks but the
transfer rate was low (get one block at time).
Unorganized freelist:
Consecutive file blocks are not close together. This meant the OS had to pay a
seek cost for even sequential access. Another issue was aging, which is when
the freelist becomes fragmented over time.
Poor locality:
The inodes were far from data blocks.
Furthermore, inodes for directories were not close together. This meant poor
enumeration performance, for commands like Is.

Problem 1 - blocks are too small:
Bigger block increases bandwidth, but increases internal fragmentation as well.

E.g.

100

Percent (%)

40

80

60}

20+

St

=~ Space Wasted w—a File Bandwidth

2B 1024B 2048B 40968 1MB
Block Size

The solution is to use fragments.

Allow |

arge blocks to be chopped into small ones called "fragments".

Ensure fragments are only used for little files or ends of files.

Ensure that the fragment size is specified at the time that the file system is created.
Limit the number of fragments per block to 2, 4, or 8.

This solution has a high transfer speed for larger files and low wasted space for small
files or ends of files.



CSCC69 Week 10 Notes

Problem 2 - Unorganized Freelist:

Unorganized freelist leads to random allocation of sequential file blocks overtime.
The solution is to use bitmaps.

Periodical compact/defragment disk but locks up disk bandwidth during operation.
Keep adjacent free blocks together on the freelist but costly to maintain,

Each bit indicates whether the block is free.

Easier to find contiguous blocks.

Are small, so usually keep the entire thing in memory.

The time to find free blocks increases if there are fewer free blocks.

Here’s the algorithm:

- Allocate a block close to block x.

- Check for blocks near bmap[x/32].

- If the disk is almost empty, it will be likely to find one near.

- As the disk becomes full, search becomes more expensive and less effective.

Problem 3 - Poor Locality:

The solution is to use a cylinder group.

Group sets of consecutive cylinders into cylinder groups.

Using this way, the OS can access any block in a cylinder without performing a seek as
the next fastest place is the adjacent cylinder.

Tries to put everything related in the same cylinder group.

Tries to put everything not related in different groups.

If you access one block, you'll probably access the next block, too, so let's try to put
sequential blocks in adjacent sectors.

If you look at an inode, you’ll most likely look at the file data too, so let's try to keep the
inode in the same cylinder as the file data.

If you access one file in a directory, you'll probably frequently access the other files in
that directory, so let's try to keep all inodes in a directory in the same cylinder group.
How to keep inode close to the data block? — Use groups across disks and allocate
inodes and data blocks in the same group. This way, each cylinder group is basically a
mini-Unix file system.

Improving Reliability with Log-Structured File system (LFS) and Journaling File
System (ext3):

What happens when there’s power loss or a system crash:

- Sectors (but not a block) are written atomically by the hard drive device.

- But an FS operation might modify several sectors, such as metadata blocks (free
bitmaps and inodes) and data blocks. Hence, a crash has a high chance of
corrupting the file system.

Solution 1 - Unix fsck (File System Checker):

- When the system boots, check the system looking for inconsistencies and try to
fix errors automatically.

- However, this cannot fix all crash scenarios.

- Furthermore, it has poor performance. Sometimes it takes hours to run on large
disk volumes and does fsck have to run upon every reboot (Not well-defined
consistency)?

Solution 2 - Log Structure File System (LFS) or Copy-On-Write Logging:

- Theidea is to treat the disk like a tape-drive.

- Buffer all data (including inode) in memory segment.

- Write buffered data to a new segment on disk in a sequential log.

- Existing data is not overwritten as the segment is always written in a free
location.

- Best performance from disk for sequential access.



CSCC69 Week 10 Notes

- In the original Unix File System, the inode table is placed at a fixed location.
However, in a Log-structured File System, the inode table is split and spread-out
on the disk. Hence, the LFS needs to use an inode map (imap) to map the inode
number with its location on disk.

- The OS must have some fixed and known location on disk to begin a file lookup.
The check-point region (CR) contains a pointer to the latest pieces of the inode
map. The CR is updated periodically (every 30 sec or so) to avoid degrading the
performances.

- LFS - Crash recovery:

The check-point region (CR) must be updated atomically.
The LFS keeps two CRs and writing a CR is done in 3 steps:
1. Writes out the header with a timestamp #1.
2. Writes the body of the CR.
3. Writes one last block with another timestamp #2.
A crash can be detected if timestamp #1 is after #2.
The LFS will always choose the most recent and valid CR.
All logs written after a successful CR update will be lost in case of a
crash.

- LFS - Disk Cleaning (a.k.a Garbage Collection):

The LFS leaves an old version of file structures on disk.

The LFS keeps information of the version of each segment and runs a
disk cleaning process.

A cleaning process removes old versions by compacting contiguous
blocks in memory.

That cleaning process runs when the disk is idle or when running out of
disk space.

Solution 3 - Journaling or Write-Ahead Logging:
- Write the "intent" down to disk before updating the file system.
- When a crash occurs, look through the log to see what was going on and use the
contents of the log to fix file system structures.
- The process is called recovery.



